首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cell cycle-regulated cortical dynein/dynactin promotes symmetric cell division by differential pole motion in anaphase
Authors:Elizabeth S Collins  Sai Keshavan Balchand  Jessica L Faraci  Patricia Wadsworth  Wei-Lih Lee
Institution:Biology Department, University of Massachusetts, Amherst, MA 01003 Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003.
Abstract:In cultured mammalian cells, how dynein/dynactin contributes to spindle positioning is poorly understood. To assess the role of cortical dynein/dynactin in this process, we generated mammalian cell lines expressing localization and affinity purification (LAP)-tagged dynein/dynactin subunits from bacterial artificial chromosomes and observed asymmetric cortical localization of dynein and dynactin during mitosis. In cells with asymmetrically positioned spindles, dynein and dynactin were both enriched at the cortex distal to the spindle. NuMA, an upstream targeting factor, localized asymmetrically along the cell cortex in a manner similar to dynein and dynactin. During spindle motion toward the distal cortex, dynein and dynactin were locally diminished and subsequently enriched at the new distal cortex. At anaphase onset, we observed a transient increase in cortical dynein, followed by a reduction in telophase. Spindle motion frequently resulted in cells entering anaphase with an asymmetrically positioned spindle. These cells gave rise to symmetric daughter cells by dynein-dependent differential spindle pole motion in anaphase. Our results demonstrate that cortical dynein and dynactin dynamically associate with the cell cortex in a cell cycle-regulated manner and are required to correct spindle mispositioning in LLC-Pk1 epithelial cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号