首页 | 本学科首页   官方微博 | 高级检索  
     


Structure and Mechanism of Human UDP-xylose Synthase: EVIDENCE FOR A PROMOTING ROLE OF SUGAR RING DISTORTION IN A THREE-STEP CATALYTIC CONVERSION OF UDP-GLUCURONIC ACID
Authors:Thomas Eixelsberger  Sabine Sykora  Sigrid Egger  Michael Brunsteiner  Kathryn L Kavanagh  Udo Oppermann  Lothar Brecker  Bernd Nidetzky
Affiliation:From the Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, A-8010 Graz, Austria.
Abstract:UDP-xylose synthase (UXS) catalyzes decarboxylation of UDP-d-glucuronic acid to UDP-xylose. In mammals, UDP-xylose serves to initiate glycosaminoglycan synthesis on the protein core of extracellular matrix proteoglycans. Lack of UXS activity leads to a defective extracellular matrix, resulting in strong interference with cell signaling pathways. We present comprehensive structural and mechanistic characterization of the human form of UXS. The 1.26-Å crystal structure of the enzyme bound with NAD+ and UDP reveals a homodimeric short-chain dehydrogenase/reductase (SDR), belonging to the NDP-sugar epimerases/dehydratases subclass. We show that enzymatic reaction proceeds in three chemical steps via UDP-4-keto-d-glucuronic acid and UDP-4-keto-pentose intermediates. Molecular dynamics simulations reveal that the d-glucuronyl ring accommodated by UXS features a marked 4C1chair to BO,3boat distortion that facilitates catalysis in two different ways. It promotes oxidation at C4 (step 1) by aligning the enzymatic base Tyr147 with the reactive substrate hydroxyl and it brings the carboxylate group at C5 into an almost fully axial position, ideal for decarboxylation of UDP-4-keto-d-glucuronic acid in the second chemical step. The protonated side chain of Tyr147 stabilizes the enolate of decarboxylated C4 keto species (2H1half-chair) that is then protonated from the Si face at C5, involving water coordinated by Glu120. Arg277, which is positioned by a salt-link interaction with Glu120, closes up the catalytic site and prevents release of the UDP-4-keto-pentose and NADH intermediates. Hydrogenation of the C4 keto group by NADH, assisted by Tyr147 as catalytic proton donor, yields UDP-xylose adopting the relaxed 4C1chair conformation (step 3).
Keywords:Carbohydrate Biosynthesis   Decarboxylase   Dehydrogenase   Enzyme Mechanisms   Enzyme Structure   Glycosaminoglycan   Enzyme Reaction Coordinate   Short-chain Dehydrogenase/Reductase   Substrate Distortion/Destabilization   UDP-glucuronic Acid
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号