首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Requirements for comparing the performance of finite element models of biological structures
Authors:Dumont E R  Grosse I R  Slater G J
Institution:a Department of Biology, University of Massachusetts Amherst, 221 Morrill Science Center, 611 North Pleasant Street, Amherst, MA 01003, USA
b Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, 160 Governor's Drive, Amherst, MA 01003, USA
c Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095-1606, USA
Abstract:The widespread availability of three-dimensional imaging and computational power has fostered a rapid increase in the number of biologists using finite element analysis (FEA) to investigate the mechanical function of living and extinct organisms. The inevitable rise of studies that compare finite element models brings to the fore two critical questions about how such comparative analyses can and should be conducted: (1) what metrics are appropriate for assessing the performance of biological structures using finite element modeling? and, (2) how can performance be compared such that the effects of size and shape are disentangled? With respect to performance, we argue that energy efficiency is a reasonable optimality criterion for biological structures and we show that the total strain energy (a measure of work expended deforming a structure) is a robust metric for comparing the mechanical efficiency of structures modeled with finite elements. Results of finite element analyses can be interpreted with confidence when model input parameters (muscle forces, detailed material properties) and/or output parameters (reaction forces, strains) are well-documented by studies of living animals. However, many researchers wish to compare species for which these input and validation data are difficult or impossible to acquire. In these cases, researchers can still compare the performance of structures that differ in shape if variation in size is controlled. We offer a theoretical framework and empirical data demonstrating that scaling finite element models to equal force: surface area ratios removes the effects of model size and provides a comparison of stress-strength performance based solely on shape. Further, models scaled to have equal applied force:volume ratios provide the basis for strain energy comparison. Thus, although finite element analyses of biological structures should be validated experimentally whenever possible, this study demonstrates that the relative performance of un-validated models can be compared so long as they are scaled properly.
Keywords:FEA  Scaling  Optimization  Work  Strain energy  von Mises stress
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号