首页 | 本学科首页   官方微博 | 高级检索  
     


Interaction of D-glucose with alkaline-earth metal ions. Synthesis, spectroscopic, and structural characterization of Mg(II)- and Ca(II)-D-glucose adducts and the effect of metal-ion binding on anomeric configuration of the sugar
Authors:H A Tajmir-Riahi
Affiliation:Department of Chemistry, University of Laval, Quebec, Canada.
Abstract:The interaction of D-glucose with the hydrated alkaline-earth metal halides has been studied in solution, and adducts of the type Mg(D-glucose)X2.4 H2O, Ca(D-glucose)X2.4 H2O, and Ca(D-glucose)2X2.4 H2O, where X = Cl- and Br-, have been isolated, and characterized by means of F.t.-i.r. and 1H-n.m.r. spectroscopy, X-ray powder diffraction, and molar conductivity measurements. Spectroscopic and other evidence suggested that the Mg(II) ion in the Mg(D-glucose)X2.4 H2O adducts six-coordinate, binding to a D-glucose molecule (possibly via O-1 and O-2 atoms) and to four H2O molecules, whereas, in the corresponding 1:1 Ca-D-glucose adduct, the Ca(II) ion is possibly seven-coordinate, binding to a sugar moiety (through the O-1, O-2, and other sugar donor atoms) and to four H2O molecules. In 1:2 Ca(D-glucose)2X2.4 H2O, the calcium ion may be eight-coordinate, binding to two D-glucose molecules (possibly via the O-1 and O-2 atoms of each sugar moiety) and to four H2O molecules. The strong, sugar H-bonding network is rearranged upon D-glucose adduct-formation, and the alpha-anomeric configuration is favored by these metal cation coordinations.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号