首页 | 本学科首页   官方微博 | 高级检索  
     


Eavesdropping on heterospecific alarm calls: from mechanisms to consequences
Authors:Robert D. Magrath  Tonya M. Haff  Pamela M. Fallow  Andrew N. Radford
Affiliation:1. Division of Evolution, Ecology & Genetics, Research School of Biology, Australian National University, Canberra 0200, Australia;2. School of Biological Sciences, University of Bristol, Bristol BS8 1UG, U.K.
Abstract:Animals often gather information from other species by eavesdropping on signals intended for others. We review the extent, benefits, mechanisms, and ecological and evolutionary consequences of eavesdropping on other species' alarm calls. Eavesdropping has been shown experimentally in about 70 vertebrate species, and can entail closely or distantly related species. The benefits of eavesdropping include prompting immediate anti‐predator responses, indirect enhancement of foraging or changed habitat use, and learning about predators. Eavesdropping on heterospecifics can provide more eyes looking for danger, complementary information to that from conspecifics, and potentially information at reduced cost. The response to heterospecific calls can be unlearned or learned. Unlearned responses occur when heterospecific calls have acoustic features similar to that used to recognize conspecific calls, or acoustic properties such as harsh sounds that prompt attention and may allow recognition or facilitate learning. Learning to recognize heterospecific alarm calls is probably essential to allow recognition of the diversity of alarm calls, but the evidence is largely indirect. The value of eavesdropping on different species is affected by problems of signal interception and the relevance of heterospecific alarm calls to the listener. These constraints on eavesdropping will affect how information flows among species and thus affect community function. Some species are ‘keystone’ information producers, while others largely seek information, and these differences probably affect the formation and function of mixed‐species groups. Eavesdroppers might also integrate alarm calls from multiple species to extract relevant and reliable information. Eavesdropping appears to set the stage for the evolution of interspecific deception and communication, and potentially affects communication within species. Overall, we now know that eavesdropping on heterospecific alarm calls is an important source of information for many species across the globe, and there are ample opportunities for research on mechanisms, fitness consequences and implications for community function and signalling evolution.
Keywords:alarm call  eavesdropping  interspecific eavesdropping  heterospecific eavesdropping  predation  anti‐predator behaviour  mixed‐species groups  information network  deception  mimicry
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号