首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Control of the shape of a thrombus-neointima-like structure by blood shear stress
Authors:Liu S Q  Zhong L  Goldman J
Institution:Biomedical Engineering Department, Northwestern University, Evanston, IL 60208-3107, USA.
Abstract:Fluid mechanical factors are thought to influence vascular morphogenesis. Here we show how blood shear stress regulates the shape of a thrombus-neointima-like tissue on a polymer micro-cylinder implanted in the center of the rat vena cava with the micro-cylinder perpendicular to blood flow. In this model, the micro-cylinder is exposed to a laminarflow with a known shear stress field in the leading region and a vortexflow in the trailing region. At 1, 5, 10, 20, and 30 days after implantation, it was found that the micro-cylinder was encapsulated by a thrombus-neointima-like tissue with a streamlined body profile. The highest growth rate of the thrombus-neointima-like tissue was found along the trailing and leading stagnation edges of the micro-cylinder. Blood shear stress in the laminar flow region was inversely correlated with the rate of thrombus formation and cell proliferation, and the percentage of smooth muscle a actin-positive cells. These biological changes were also found in the trailing vortex flow region, which was associated with lowered shear stress. These results suggest that blood shear stress regulates the rate of thrombus and neointimal formation and, thus, influences the shape of the thrombus-neointima-like structure in the present model.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号