首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Genetics and evolution of phenotypic plasticity to nutrient stress in Arabidopsis: drift,constraints or selection?
Authors:Massimo Pigliucci  Noah Byrd
Institution:Departments of Botany and of Ecology &Evolutionary Biology, University of Tennessee, Knoxville, TN 37996-1100, U.S.A.
Abstract:To better understand the genetic basis and evolution of phenotypic plasticity, we have investigated how the model plant Arabidopsis thaliana (Brassicaceae) responds to nutrient stress. A preliminary experiment showed that two populations that are very closely related genetically tended to respond in a similar fashion to a variety of nutrient stresses. We then asked if there is a general relationship between the degree of genetic differentiation of 16 natural populations of A. thaliana and the similarity in the way they cope with a fundamental nutrient stress, nitrogen limitation. We also grew plants from four mutant lilies known to be affected in nitrogen uptake and metabolism, using their background isogenic line as a control. This last experiment tested whether or not defects in major genes involved in nitrogen bioprocessing affect the intensity or pattern of phenotypic plasticity. We found a high degree of genetic differentiation among populations for the ability to respond to nitrogen stress. However, we detected no significant correlation between the genetic distance among natural populations and the similarity of their response to low nitrogen availability. Since the genetic distances among populations were measured using neutral molecular markers, this suggests that random genetic drift and other non-deterministic evolutionary phenomena were not the driving force shaping differences among populations in the response to stress. On the other hand, several characters were highly correlated in their responses to nitrogen limitation, suggesting either that they were modified by natural selection in a like manner, or that they are influenced by similar genetic constraints (due to either pleiotropy or tight linkage). Finally, the mutants did not differ from the parental wild type strain in their pattern of nitrogen-induced stress response. Therefore, although the genes defective in the mutants are part of the biochemical pathway that uptakes and metabolizes nitrates, we conclude that they are not involved in the control of phenotypic plasticity to nitrogen limitation in this species.
Keywords:nitrogen stress  nitrate reductase  genetic distance  plasticity genes
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号