首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Activation by ATP of calcium-dependent NADPH-oxidase generating hydrogen peroxide in thyroid plasma membranes
Authors:Y Nakamura  S Ogihara  S Ohtaki
Institution:Central Laboratory of Clinical Investigation, Miyazaki Medical College Hospital.
Abstract:An H2O2-generating fraction was prepared from porcine thyroid homogenate by differential and Percoll-density gradient centrifugations. The fraction consisted of mainly fragmented plasma membranes as judged by marker enzyme analysis and electron microscopy. The fraction produced H2O2 by reaction with NADPH only in the presence of Ca2+. The Ca2+ concentration for half-maximal activation (KCa) was about 0.1 microM and the Hill coefficient was 2. Sr2+ also activated the reaction whereas Mn2+, Zn2+, and Cd2+ inhibited it. The reaction was enhanced about twice by addition of ATP but not ADP, and inhibited by addition of hexokinase together with glucose to remove ATP. The Km value for NADPH was 35 microM and was less than 1/12 that for NADH. The NADPH oxidation rate was measured and the KCa and the Km were similar to those for the H2O2 production. The stoichiometry between the oxidation and the H2O2 formation was essentially 1. Superoxide dismutase (SOD) and KCN did not affect H2O2 production. The fraction catalyzed NADPH-cytochrome c reduction but the activity was SOD-insensitive. These results suggest that H2O2 was not generated through superoxide anion formation. NADPH-dichloroindophenol (DCIP) reductase activity was also observed and DCIP inhibited the production of H2O2. The cytochrome c and DCIP reductase activities were not influenced by Ca2+ or ATP. A unique electron transport system regulated by Ca2+ and ATP exists in the thyroid plasma membrane that produces H2O2. The concentrations of Ca2+ and ATP in thyroid cells may regulate hormone synthesis through activation of the production of H2O2, a substrate for peroxidase.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号