首页 | 本学科首页   官方微博 | 高级检索  
   检索      


LY303511 amplifies TRAIL-induced apoptosis in tumor cells by enhancing DR5 oligomerization, DISC assembly, and mitochondrial permeabilization
Authors:Poh T W  Huang S  Hirpara J L  Pervaiz S
Institution:Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117597, Singapore.
Abstract:Certain classes of tumor cells respond favorably to TRAIL due to the presence of cell surface death receptors DR4 and DR5. Despite this preferential sensitivity, resistance to TRAIL remains a clinical problem and therefore the heightened interest in identifying compounds to revert tumor sensitivity to TRAIL. We recently demonstrated that the phosphatidylinositide-3-kinase (PI3K) inhibitor, LY294002, and its inactive analog LY303511, sensitized tumor cells to vincristine-induced apoptosis, independent of PI3K/Akt pathway. Intrigued by these findings, we investigated the effect of LY303511 on TRAIL-induced apoptosis in HeLa cells. Preincubation of cells with LY30 significantly amplified TRAIL signaling as evidenced by enhanced DNA fragmentation, caspases 2, 3, 8, and 9 activation, and reduction in the tumor colony formation. This increase in TRAIL sensitivity involved mitochondrial membrane permeabilization resulting in the egress of cytochrome c and second mitochondrial activator of caspase/direct IAP-binding protein with low PI, cleavage of X-linked inhibitor of apoptosis protein, and activation of caspase 9. We link this execution signal to the ability of LY30 to downregulate cFLIP(S) and oligomerize DR5, thus facilitating the signaling of the death initiating signaling complex. The subsequent exposure to TRAIL resulted in processing/activation of caspase 8 and cleavage of its substrate, the BH3 protein Bid. These data provide a novel mechanism of action of this small molecule with the potential for use in TRAIL-resistant tumors.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号