首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular Response of the Bloom-Forming Cyanobacterium, Microcystis aeruginosa, to Phosphorus Limitation
Authors:Matthew J Harke  Dianna L Berry  James W Ammerman  Christopher J Gobler
Institution:(1) School of Marine and Atmospheric Sciences, Stony Brook University, 239 Montauk Highway, Southampton, NY 11968, USA;(2) School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA;
Abstract:Cyanobacteria blooms caused by species such as Microcystis have become commonplace in many freshwater ecosystems. Although phosphorus (P) typically limits the growth of freshwater phytoplankton populations, little is known regarding the molecular response of Microcystis to variation in P concentrations and sources. For this study, we examined genes involved in P acquisition in Microcystis including two high-affinity phosphate-binding proteins (pstS and sphX) and a putative alkaline phosphatase (phoX). Sequence analyses among ten clones of Microcystis aeruginosa and one clone of Microcystis wesenbergii indicates that these genes are present and conserved within the species, but perhaps not the genus, as phoX was not identified in M. wesenbergii. Experiments with clones of M. aeruginosa indicated that expression of these three genes was strongly upregulated (50- to 400-fold) under low inorganic P conditions and that the expression of phoX was correlated with alkaline phosphatase activity (p < 0.005). In contrast, cultures grown exclusively on high levels of organic phosphorus sources (adenosine 5′-monophosphate, β-glycerol phosphate, and d-glucose-6-phosphate) or under nitrogen-limited conditions displayed neither high levels of gene expression nor alkaline phosphatase activity. Since Microcystis dominates phytoplankton assemblages in summer when levels of inorganic P (Pi) are often low and/or dominate lakes with low Pi and high organic P, our findings suggest this cyanobacterium may rely on pstS, sphX, and phoX to efficiently transport Pi and exploit organic sources of P to form blooms.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号