首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nitric oxide-induced modification of protein thiolate clusters as determined by spectral fluorescence resonance energy transfer in live endothelial cells
Authors:St Croix Claudette M  Stitt Molly S  Leelavanichkul Karanee  Wasserloos Karla J  Pitt Bruce R  Watkins Simon C
Institution:Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15260, USA. cls13@pitt.edu
Abstract:Low-molecular-weight S-nitrosothiols are found in many tissues and affect a diverse array of signaling pathways via decomposition to *NO or exchange of their -NO function with thiol-containing proteins (transnitrosation). We used spectral laser scanning confocal imaging to visualize the effects of D- and L-stereoisomers of S-nitrosocysteine ethyl ester (SNCEE) on fluorescence resonance energy transfer (FRET)-based reporters that are targets for the following NO-related modifications: (a) S-nitrosation, via the cysteine-rich protein metallothionein (FRET-MT), and (b) nitrosyl-heme-Fe, via guanosine 3',5'-cyclic monophosphate (cygnet-2). Conformational changes consistent with S-nitrosation of FRET-MT were specific to l-SNCEE. In addition, they were reversed by dithiothreitol (DTT) but unaffected by exogenous oxyhemoglobin. In contrast, d- and l-SNCEE had comparable effects on cygnet-2, likely via activation of soluble guanylyl cyclase (sGC) by *NO as they were sensitive to the sGC inhibitor 1H-1,2,4]-oxadiazolo4,3-alpha] quinoxalin-1-one and exogenous oxyhemoglobin. These data demonstrate the utility of spectral laser scanning confocal imaging in revealing subtle aspects of NO signal transduction in live cells. Stereoselective transnitrosation of MT emphasizes the specificity of posttranslational modification as a component of NO signaling.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号