首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Two classes of collagen-tailed,asymmetric molecular forms of acetylcholinesterase in skeletal muscle: differential effects of denervation
Authors:Ana Barat  Javier Gómez-Barriocanal  Galo Ramírez
Institution:Centro de Biología Molecular Canto Blanco, Madrid-34, Spain
Abstract:Skeletal muscles of different vertebrate species contain, as it is the case in other cholinergic tissues, two classes of collagen-tailed, asymmetric forms (A-forms) of acetylcholinesterase (AChE). Class I A-forms are readily brought into solution in the presence of high salt, while class II A-forms do additionally require a chelating agent, such as EDTA, for solubilization. All A-forms aggregate at low ionic strength but only class II A-forms are reaggregated by excess Ca++, even in the presence of 1M NaCl. This Ca++-mediated aggregability of class II A-forms is slowly lost upon exposure to detergents such as Triton X-100.Although these two classes of AChE tailed forms seem to be present in endplate and non-endplate areas, and in both the extra- and intracellular compartments, class II A-forms are predominantly extracellular and endplate-specific, at least in the rat diaphragm. On the other hand, well-characterized fast- and slow-twitch muscles show no preference for either class of asymmetric AChE species. Upon denervation, class I A-forms are degraded faster and disappear earlier than their class II counterparts, which are still easily detectable 17 days after nerve section.Class I and class II AChE molecular species exist in similar relative proportions in many vertebrate muscles. Thus, collagen-tailed forms may be altogether more abundant, in skeletal muscle, than it was hitherto realized.It is expected that this further example of AChE polymorphism will contribute to a better understanding of cholinergic transmission in skeletal muscle and, more specially, of nerve-muscle interactions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号