首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization of the oligosaccharide component of alpha3beta1 integrin from human bladder carcinoma cell line T24 and its role in adhesion and migration
Authors:Pocheć Ewa  Lityńska Anna  Bubka Monika  Amoresano Angela  Casbarra Annarita
Institution:Institute of Zoology, Jagiellonian University, R. Ingardena 6, PL-30060 Kraków, Poland. epoch@zuk.iz.uj.edu.pl
Abstract:Malignant transformation is highly associated with altered expression of cell surface N-linked oligosaccharides. These changes concern integrins, a family of cell surface glycoproteins involved in the attachment and migration of cells on various extracellular matrix proteins. The integrin alpha3beta1 is particularly interesting because of its role in migration and invasion of several types of metastatic tumours. In this study, alpha3beta1 from human bladder T24 carcinoma cells was purified and treated with peptide N-glycosidase F. Then the N-glycans of the alpha3 and beta1 subunits were characterized using matrix-assisted laser desorption ionization mass spectrometry (MALDI MS). In alpha3beta1 integrin the presence of high-mannose, hybrid and predominantly complex type N-oligosaccharides was shown. Unlike to normal epithelium cells, in both subunits of alpha3beta1 integrin from cancer cells, the sialylated tetraantennary complex type glycan Hex7HexNAc6FucSia4 was present. In a direct ligand binding assay, desialylated alpha3beta1 integrin exhibited significantly higher fibronectin-binding capability than untreated integrin, providing evidence that sialic acids play a direct role in ligand-receptor interaction. Moreover, alpha3beta1 integrin was shown to take part in T24 cell migration on fibronectin: anti-alpha3 antibodies induced ca 30% inhibition of wound closure. Treatment of T24 cells with swainsonine reduced the rate of bladder carcinoma cell migration by 16%, indicating the role of beta1,6 branched complex type glycans in this process. Our data show that alpha3beta1 integrin function may be altered by glycosylation, that both subunits contribute to these changes, and that glycosylation may be considered a newly found mechanism in the regulation of integrin function.
Keywords:Cell adhesion  ELISA  Glycosylation  α  3β  1 Integrin  MALDI MS
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号