首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Thrombin, epidermal growth factor, and phorbol myristate acetate stimulate tubulin polymerization in quiescent cells: a potential link to mitogenesis.
Authors:R L Ball  T Albrecht  W C Thompson  O James  D H Carney
Institution:Department of Microbiology, University of Texas Medical Branch, Galveston.
Abstract:Previous studies suggest that alterations in the microtubule (MT)-tubulin equilibrium during G0/G1 affect mitogenesis. To determine the effect of growth factors on the MT-tubulin equilibrium, we developed a radioactive monoclonal antibody binding assay (Ball et al.: J. Cell. Biol. 103:1033-1041, 1986). With this assay, 3H-Ab 1-1.1 binding to cytoskeletons in confluent populations of cultured cells is proportional to the number of tubulin subunits polymerized into MTs. We now show that purified alpha-thrombin increases 3H-Ab 1-1.1 binding to cytoskeletons of serum-arrested mouse embryo (ME) fibroblasts from 1.5- to 3-fold. This stimulation is dose-dependent and correlates with concentrations of thrombin required for initiation of DNA synthesis. Other mitogenic factors, epidermal growth factor (EGF) and phorbol 12-myristate 13-acetate (PMA), also stimulate MT polymerization. Addition of colchicine (0.3 microM) eight hours after growth factor addition, blocks stimulation of 3H-thymidine incorporation by thrombin, EGF, or PMA, suggesting that tubulin polymerization or subsequent events triggered by MT polymerization are required for cells to enter a proliferative cycle. Consistent with models for autoregulation of tubulin synthesis, thrombin, EGF, and PMA all increase tubulin synthesis 9 to 15 hr after growth factor addition, raising the possibility that the decrease in free tubulin and subsequent stimulation of tubulin synthesis is linked to progression of cells into a proliferative cycle. Colchicine addition to these cells also stimulates DNA synthesis, but colchicine-stimulated cells enter S phase 6 to 8 hr later than those stimulated by growth factors. This delayed stimulation may be related to the time required for degradation of tubulin-colchicine complexes below a critical level. These data suggest that regulation of cell proliferation may be linked to increased MT polymerization and the resulting decrease in free tubulin pools.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号