首页 | 本学科首页   官方微博 | 高级检索  
     


Structural differences among phosphatidylcholine, phosphatidylethanolamine, and mixed phosphatidylcholine/phosphatidylethanolamine multilayers: an infrared absorption study
Authors:J E Fookson  D F Wallach
Affiliation:Tufts-New England Medical Center, Therapeutic Radiology Department, Radiobiology Division, 171 Harrison Avenue, Boston, Massachusetts 02111 USA
Abstract:We have examined the infrared absorption spectra from 4000 to 250 cm?1 of multilayers of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylcholine/phosphatidylethanolamine (1:1 m/m) as a function of hydration, pH, and fatty acid composition. Characteristic splittings of the CH2 bending and rocking modes and the position of the phosphoryl absorption at ca. 1240 cm?1 reveal differences in acyl chain packing and head group conformation in the various films. Spectra demonstrate the importance of NH → O hydrogen bonding of the ethanolamine head group and the prerequisite head group conformation (tangent to the multilayer plane) in establishing these structural differences. The general appearance of the P-O-C stretching region (~1050 cm?1) in the pure and mixed films further supports these conclusions and shows that the spectra clearly distinguish among the different head group orientations. Self-association of phosphatidylethanolamine is sometimes sufficient to prevent formation of mixed phases with phosphatidylcholine at neutral pH. The amount of fine structure, particularly in the low-frequency (800?200 cm?1) region, in spectra of films of anhydrous, saturated-chain phospholipids decreases considerably when the films are monohydrated, when mixed phases exist, or when there are unsaturations in the acyl chains. These changes likely result from decreased crystal field effects in the spectra as the phosphatide packing density is decreased by any of the above procedures. Furthermore, the absence of other changes upon complete hydration of phosphatidylcholine films suggests that only the initial water is tightly bound to the lipid.
Keywords:Authors to whom correspondence should be addressed.
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号