首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phylogenomic analysis of kinetoplastids supports that trypanosomatids arose from within bodonids
Authors:Deschamps Philippe  Lara Enrique  Marande William  López-García Purificación  Ekelund Flemming  Moreira David
Abstract:Kinetoplastids are a large group of free-living and parasitic eukaryotic flagellates, including the medically important trypanosomatids (e.g., Trypanosoma and Leishmania) and the widespread free-living and parasitic bodonids. Small subunit rRNA- and conserved protein-based phylogenies support the division of kinetoplastids into five orders (Prokinetoplastida, Neobodonida, Parabodonida, Eubodonida, and Trypanosomatida), but they produce incongruent results regarding their relative branching order, in particular for the position of the Trypanosomatida. In general, small subunit rRNA tends to support their early emergence, whereas protein phylogenies most often support a more recent origin from within bodonids. In order to resolve this question through a phylogenomic approach, we carried out massive parallel sequencing of cDNA from representatives of three bodonid orders (Bodo saltans -Eubodonida-, Procryptobia sorokini -Parabodonida-, and Rhynchomonas nasuta -Neobodonida-). We identified 64 well-conserved proteins shared by these species, four trypanosomatids, and two closely related outgroup species (Euglena gracilis and Diplonema papillatum). Phylogenetic analysis of a concatenated data set yielded a strongly supported tree showing the late emergence of trypanosomatids as a sister group of the Eubodonida. In addition, we identified homologues of proteins involved in trypanosomatid mitochondrial mRNA editing in the three bodonid species, suggesting that editing may be widespread in kinetoplastids. Comparison of expressed sequences from mitochondrial genes showed variability at U positions, in agreement with the existence of editing activity in the three bodonid orders most closely related to trypanosomatids (Neobodonida, Parabodonida, and Eubodonida). Mitochondrial mRNA editing appears to be an ancient phenomenon in kinetoplastids.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号