首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Natural selection in gene-dense regions shapes the genomic pattern of polymorphism in wild and domesticated rice
Authors:Flowers Jonathan M  Molina Jeanmaire  Rubinstein Samara  Huang Pu  Schaal Barbara A  Purugganan Michael D
Institution:Department of Biology and Center for Genomics and Systems Biology, New York University, NY, USA.
Abstract:Levels of nucleotide variability are frequently positively correlated with recombination rate and negatively associated with gene density due to the effects of selection on linked variation. These relationships are determined by properties that frequently differ among species, including the mating system, and aspects of genome organization such as how genes are distributed along chromosomes. In rice, genes are found at highest density in regions with frequent crossing-over. This association between gene density and recombination rate provides an opportunity to evaluate the effects of selection in a genomic context that differs from other model organisms. Using single-nucleotide polymorphism data from Asian domesticated rice Oryza sativa ssp. japonica and ssp. indica and their progenitor species O. rufipogon, we observe a significant negative association between levels of polymorphism and both gene and coding site density, but either no association, or a negative correlation, between nucleotide variability and recombination rate. We establish that these patterns are unlikely to be explained by neutral mutation rate biases and demonstrate that a model of background selection with variable rates of deleterious mutation is sufficient to account for the gene density effect in O. rufipogon. In O. sativa ssp. japonica, we report a strong negative correlation between polymorphism and recombination rate and greater losses of variation during domestication in the euchromatic chromosome arms than heterochromatin. This is consistent with Hill-Robertson interference in low-recombination regions, which may limit the efficacy of selection for domestication traits. Our results suggest that the physical distribution of selected mutations is a primary factor that determines the genomic pattern of polymorphism in wild and domesticated rice species.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号