首页 | 本学科首页   官方微博 | 高级检索  
     


Computational method for the design of enzymes with altered substrate specificity.
Authors:C Wilson  J E Mace  D A Agard
Affiliation:Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448.
Abstract:A combination of enzyme kinetics and X-ray crystallographic analysis of site-specific mutants has been used to probe the determinants of substrate specificity for the enzyme alpha-lytic protease. We now present a generalized model for understanding the effects of mutagenesis on enzyme substrate specificity. This algorithm uses a library of side-chain rotamers to sample conformation space within the binding site for the enzyme-substrate complex. The free energy of each conformation is evaluated with a standard molecular mechanics force field, modified to include a solvation energy term. This rapid energy calculation based on coarse conformation sampling quite accurately predicts the relative catalytic efficiency of over 40 different alpha-lytic protease-substrate combinations. Unlike other computational approaches, with this method it is feasible to evaluate all possible mutations within the binding site. Using this algorithm, we have successfully designed a protease that is both highly active and selective for a non-natural substrate. These encouraging results indicate that it is possible to design altered enzymes solely on the basis of empirical energy calculations.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号