首页 | 本学科首页   官方微博 | 高级检索  
     


Cholesterol depletion modulates basal L-type Ca2+ current and abolishes its -adrenergic enhancement in ventricular myocytes
Authors:Tsujikawa Hiroto  Song Yumei  Watanabe Makino  Masumiya Haruko  Gupte Sachin A  Ochi Rikuo  Okada Takao
Affiliation:Department of Physiology, New York Medical College, Valhalla, NY 10595, USA.
Abstract:Cholesterol is a primary constituent of the plasmalemma, including the lipid rafts/caveolae, where various G protein-coupled receptors colocalize with signaling proteins and channels. By manipulating cholesterol in rabbit and rat ventricular myocytes using methyl-beta-cyclodextrin (MbetaCD), we studied the role of cholesterol in the modulation of L-type Ca(2+) currents (I(Ca,L)). MbetaCD was mainly dialyzed from BAPTA-containing pipette solution during whole cell clamp. In rabbit myocytes dialyzed with 30 mM MbetaCD for 10 min, a positive shift in membrane potential at half-maximal activation (V(0.5)) from -8 to -2 mV developed and was associated with an increase in current density at positive potentials (42% at +20 mV vs. time-matched controls). Isoproterenol (ISO) increased I(Ca,L) approximately threefold and caused a negative shift in V(0.5) in control cells, but it did not increase I(Ca,L) in MbetaCD-treated myocytes, nor did it shift V(0.5). The effect of MbetaCD (10 or 30 mM) was concentration dependent: 30 mM MbetaCD suppressed the ISO-induced increase in I(Ca,L) more effectively than 10 mM MbetaCD. MbetaCD dialysis also abolished the increase in I(Ca,L) elicited by forskolin or dibutyryl cAMP, but not that elicited by (-)BAY K 8644. External application of MbetaCD-cholesterol complex to rat myocytes attenuated the MbetaCD-mediated inhibition of the ISO-induced increase of I(Ca,L). Biochemical analysis confirmed that the myocytes' cholesterol content was diminished by MbetaCD and increased by MbetaCD-cholesterol complex. Cholesterol thus appears to contribute to the regulation of basal I(Ca,L) and beta-adrenergic cAMP/PKA-mediated increases in I(Ca,L). We suggest that cholesterol affects the structural coupling between L-type Ca(2+) channels and adjacent regulatory proteins.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号