首页 | 本学科首页   官方微博 | 高级检索  
   检索      


High affinity binding of receptor-associated protein to heparin and low density lipoprotein receptor-related protein requires similar basic amino acid sequence motifs
Authors:Melman L  Cao Z F  Rennke S  Marzolo M P  Wardell M R  Bu G
Institution:Department of Pediatrics Washington University School of Medicine, St. Louis, Missouri 63110, USA.
Abstract:The 39-kDa receptor-associated protein (RAP) is a specialized chaperone for members of the low density lipoprotein receptor gene family, which also binds heparin. Previous studies have identified a triplicate repeat sequence within RAP that appears to exhibit differential functions. Here we generated a series of truncated and site-directed RAP mutants in order to define the sites within RAP that are important for interacting with heparin and low density lipoprotein receptor-related protein (LRP). We found that high affinity binding of RAP to heparin is mediated by the carboxyl-terminal repeat of RAP, whereas both the carboxyl-terminal repeat and a combination of amino and central repeats exhibit high affinity binding to LRP. Several motifs were found to mediate the binding of RAP to heparin, and each contained a cluster of basic amino acids; among them, an intact R(282)VSR(285)SR(287)EK(289) motif is required for high affinity binding of RAP to heparin, whereas two other motifs, R(203)LR(205)R(206) and R(314)ISR(317)AR(319), also contribute to this interaction. We also found that intact motifs of both R(203)LR(205)R(206) and R(282)VSR(285)SR(287)EK(289) are required for high affinity binding of RAP to LRP, with the third motif, R(314)ISR(317)AR(319), contributing little to RAP-LRP interaction. We conclude that electrostatic interactions likely contribute significantly in the binding of RAP to both heparin and LRP and that high affinity interaction with both heparin and LRP appears to require mostly overlapping sequence motifs within RAP.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号