首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Paxillin phosphorylation, actin polymerization, noise temperature, and the sustained phase of swine carotid artery contraction
Authors:Rembold Christopher M  Tejani Ankit D  Ripley Marcia L  Han Shaojie
Institution:Cardiovascular Division, Univ. of Virginia Health System, PO Box 800146, Charlottesville, VA 22908-0146, USA. crembold@virginia.edu
Abstract:Histamine stimulation of swine carotid artery induces both contraction and actin polymerization. The importance of stimulus-induced actin polymerization is not known. Tyrosine phosphorylation of the scaffolding protein paxillin is thought to be an important regulator of actin polymerization. Noise temperature, hysteresivity, and phase angle are rheological measures of the fluidity of a tissue, i.e., whether the muscle is more a "Hookean solid" or a "Newtonian liquid." Y118 paxillin phosphorylation, crossbridge phosphorylation, actin polymerization, noise temperature, hysteresivity, phase angle, real stiffness, and stress were measured in intact swine carotid arteries that were depolarized with high K+ or stimulated with histamine. The initial rapid force development phase of high-K+ or histamine-induced contraction was associated with increased crossbridge phosphorylation but no significant change in Y118 paxillin phosphorylation, actin polymerization, noise temperature, hysteresivity, or phase angle. This suggests that the initial contraction was caused by the increase in crossbridge phosphorylation and did not alter the tissue's rheology. Only after full force development was there a significant increase in Y118 paxillin phosphorylation and actin polymerization associated with a significant decrease in noise temperature and hysteresivity. These data suggest that some part of the sustained contraction may depend on stimulated actin polymerization and/or a transition to a more "solid" rheology. Supporting this contention was the finding that an inhibitor of actin polymerization, latrunculin-A, reduced force while increasing noise temperature/hysteresivity. Further research is needed to determine whether Y118 paxillin phosphorylation, actin polymerization, and changes in rheology could have a role in arterial smooth muscle contraction. cytoskeleton; hysteresivity; latch hypothesis; vascular smooth muscle
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology》浏览原始摘要信息
点击此处可从《American journal of physiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号