首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Inhibition of Na transport by 2-chloroadenosine: dissociation from production of cyclic nucleotides
Authors:R F Husted  G P Clancy  A Adams-Brotherton  J B Stokes
Institution:Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242.
Abstract:The adenosine analogue 2-chloroadenosine (2-CA) is often used to determine the biologic effects of adenosine because 2-CA is less susceptible to degradation than adenosine. We studied the effects of 2-CA on primary cultures of rat inner medullary collecting ducts because there is good evidence that adenosine can influence cell function through its effects on second messengers. 2-CA inhibited Na+ transport across the apical membrane and increased cAMP content of the cells. The major adenosine receptors in these cells appear to be the stimulatory (A2) type. Stimulation of cAMP by 2-CA was more potent when applied to the apical membrane than to the basolateral membrane, an effect opposite to that of vasopressin. These results imply that adenosine receptors are more numerous or more effective on the apical membrane than on the basolateral membrane. Inhibition of Na+ transport was probably not mediated by an adenosine receptor as evidenced by (i) a lack of effect of adenosine and other adenosine analogues on Na+ transport; (ii) a lack of effect of nonmetabolizable cyclic nucleotides on Na+ transport; and (iii) a clear discrepancy in the temporal course of 2-CA effects on a second messenger system (cAMP) and 2-CA inhibition of Na+ transport. Dipyridimole, an inhibitor of adenosine transport, also reduced Na+ transport. Taken together, the data suggest that 2-CA inhibits Na+ transport by interfering with adenosine transport or metabolism.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号