A study on the role of protein kinase C and intracellular calcium in the activation of superoxide generation |
| |
Authors: | N O Christiansen C S Larsen V Esmann |
| |
Affiliation: | Department of Medicine and Infectious Diseases, Marselisborg Hospital, Aarhus C, Denmark. |
| |
Abstract: | Accumulating evidence indicates that protein kinase C plays an essential role in the activation of NADPH oxidase. In the present study, the correlation between superoxide generation, intracellular calcium, activation of purified protein kinase C and stabilized membrane-bound protein kinase C was studied. Phorbol 12-myristate 13-acetate (PMA) and 1-deacyl-2-acetyl-rac-glycerol (OAG) were found to induce equal activation of purified protein kinase C and translocation of protein kinase C to the membrane fraction, but differed significantly in their ability to induce superoxide generation. Intracellular calcium was varied using calcium ionophores and increasing the intracellular calcium concentration to more than 1 microM was found to induce increased superoxide generation in maximally OAG-stimulated cells; this contrasted to maximally PMA-stimulated leukocytes. Ionomycin and A23187 were both found to induce a translocation of protein kinase C to the membrane fraction. This translocation was highly dependent upon extracellular calcium. In contrast, PMA- and OAG-induced translocation of protein kinase C was not dependent upon extracellular calcium. In conclusion, our results indicate that although PMA, OAG and calcium ionophores seem to activate protein kinase C in human polymorphonuclear leukocytes these activators differ in their ability to induce superoxide generation. |
| |
Keywords: | |
|
|