首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Endogenous cytokinin dynamics in micropropagated tulips during bulb formation process influenced by TDZ and iP pretreatment
Authors:Email author" target="_blank">Malgorzata?PodwyszyńskaEmail author  Ond?ej?Novák  Karel?Dole?al  Miroslav?Strnad
Institution:1.Research Institute of Horticulture,Skierniewice,Poland;2.Department of Chemical Biology and Genetics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research,Palacky University,Olomouc,Czech Republic;3.Department of Metabolomics, Centre of the Region Haná for Biotechnological and Agricultural Research,Institute of Experimental Botany ASCR,Olomouc,Czech Republic
Abstract:There are substantial variations in bulbing (bulb formation) efficiency among micropropagated tulip cultivars. The mechanisms involved are poorly understood, but presumably involve cytokinins (CKs) for several reasons. Therefore, we explored CK profiles and dynamics in ‘Blue Parrot’ and ‘Prominence’ cultivars (which have low and high bulbing efficiency, respectively) during the in vitro propagation stages: the last shoot multiplication subculture extended to 14 weeks (S1–S2), the shoot cooling at 5 °C for induction of bulb formation (S3–S4) and the bulb growth initiation after the end of cooling (S5–S6). The CK thidiazuron (TDZ) is routinely used in tulip micropropagation at the shoot multiplication stage, but replacing it with isopentenyladenine (iP) during the last multiplication subculture substantially changed CK dynamics in later stages, and significantly increased bulb formation rates in both cultivars. Generally, the most abundant CKs in both cultivars were the isoprenoid CK types, trans-zeatin (tZ), iP, cis-zeatin and dihydrozeatin. However, ‘Prominence’ shoots had much lower cis- to trans-Z-type CK ratios than ‘Blue Parrot’ shoots, and generally higher levels of physiologically active CKs (free bases tZ, iP and their ribosides) until the last phase of bulb formation, S6 (bulb growth initiation, i.e. swelling of shoot bases), 6 weeks after the end of cold treatment. In this phase total active CK and O-glucoside contents sharply declined in ‘Prominence’ shoots, but not in ‘Blue Parrot’ shoots pretreated with iP. In contrast, the low bulbing ability observed in ‘Prominence’ shoots pretreated with TDZ and ‘Blue Parrot’ shoots pretreated with either TDZ or iP was associated with a gradual rise in active CK and O-glucoside contents after the end of cooling. The results suggest that low bulbing efficiency may be related to down-regulation of tZ biosynthesis, and high bulbing efficiency to a transient increase in active CK forms (mainly tZs) in response to cold treatment during the bulb induction phase, S4 (at the end of cold treatment), followed by a rapid decrease during bulb formation, S6 (6 weeks after the end of cooling).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号