首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanisms of secretory responses to gonadotropin-releasing hormone and phorbol esters in cultured pituitary cells. Participation of protein kinase C and extracellular calcium mobilization
Authors:S S Stojilkovi?  J P Chang  S Izumi  K Tasaka  K J Catt
Affiliation:Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, Bethesda, Maryland 20982.
Abstract:The role of protein kinase C in luteinizing hormone (LH) release was analyzed in studies on the actions of gonadotropin releasing hormone (GnRH) and phorbol esters in cultured pituitary cells. During incubation in normal medium, GnRH stimulated LH release with an ED50 of 0.35 nM. Incubation in Ca2+-deficient medium (Ca2+-free, 10 microM) substantially decreased but did not abolish the LH responses to GnRH. The extracellular Ca2+-dependent component of GnRH action could be mimicked by high K+ concentrations, consistent with the presence of voltage-sensitive calcium channels (VSCC) in pituitary gonadotrophs. Ca2+ channel agonist (Bay K 8644) and antagonist (nifedipine) analogs, respectively, enhanced or partially inhibited LH responses to GnRH and also to K+, the latter confirming the participation of two types of VSCC (dihydropyridine-sensitive and -insensitive) in K+-induced secretion. Phorbol esters, including 12-O-tetradecanoylphorbol-13-acetate (TPA), 4 beta-phorbol-12,13-dibenzoate, and 4 beta-phorbol-12,13-diacetate, stimulated LH release with ED50s of 5, 10, and 1000 nM, respectively, and with about 70% of the efficacy of GnRH. Phorbol ester-stimulated LH secretion was decreased but not abolished by progressive reduction of [Ca2+]e in the incubation medium, and the residual LH response was identical with that elicited by GnRH in Ca2+-deficient medium. TPA increased [Ca2+]i to a peak after 20 s in normal medium but not in the absence of extracellular Ca2+, indicating that protein kinase C (Ca2+/phospholipid-dependent enzyme) promotes calcium entry but can also mediate secretory responses without changes in calcium influx and [Ca2+]i. The extracellular Ca2+-dependent action of TPA on LH release was blocked by Co2+. However, nifedipine did not alter TPA action on [Ca2+]i and LH release. These observations indicate that protein kinase C can participate in GnRH-induced LH release that is independent of Ca2+ entry, but also promotes the influx of extracellular Ca2+ through dihydropyridine-insensitive Ca2+-channels.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号