首页 | 本学科首页   官方微博 | 高级检索  
   检索      


HIV-1 protease: characterization of a catalytically competent enzyme-substrate intermediate.
Authors:David J T Porter  Mary H Hanlon  Eric S Furfine
Institution:GlaxoSmithKline, V297.1C, 5 Moore Drive, Research Triangle Park, North Carolina 27709, USA. djp39807@GlaxoWellcome.com
Abstract:The steady-state and pre-steady-state kinetic parameters for the interaction of E with the fluorogenic substrate 2-aminobenzoyl-Thr-Ile-Nle-Phe(p-NO(2))-Gln-Arg-NH(2) were determined in 1.25 M NaCl, 0.1 M MES-TRIS at pH 6.0 at 25 degrees C. At low concentrations of enzyme, the values of the K(m) and k(cat) calculated from steady-state data were 2.1 microM and 7.4 s(-1), respectively. At high concentrations of enzyme, the time-courses of fluorescence enhancement associated with catalysis were very dependent on the excitation wavelength used to monitor the reaction. Because the absorbance spectrum of the substrate overlapped the fluorescence emission spectrum of the enzyme, these abnormalities were attributed to fluorescence energy transfer between the enzyme and the substrate in an enzyme-substrate intermediate. The kinetic data collected with lambda(ex) = 280 nm and lambda(em) > 435 nm were analyzed according to the following mechanism in which EX was the species with enhanced fluorescence relative to substrate or products: formula see text]. The values of the kinetic parameters with (1)H(2)O as the solvent were K = 13 microM, k(2) = 150 s(-1), k(-2) = 25 s(-1), and k(3) = 11 s(-1). The values of the kinetic parameters with (2)H(2)O as the solvent were K = 13 microM, k(2) = 210 s(-1), k(-2) = 12 s(-1), and k(3) = 4.4 s(-1). These values yielded solvent isotope effects of 2 on k(cat) and 0.9 on k(cat)/K(m). From analysis of the complete time-course of the fluorescence change (lambda(ex) = 280 nm and lambda(em) > 435 nm) during the course of substrate hydrolysis, the intermediate EX was determined to be 6.3-fold more fluorescent than the product, which, in turn, was 4.5-fold more fluorescent than ES or S. Rapid quench experiments with 2 N HCl as the quenching reagent confirmed that EX was a complex between enzyme and substrate. Consequently, the small burst in fluorescence observed when monitoring with lambda(ex) = 340 nm (0.3 product equiv per enzyme equivalent) was attributed to the fluorescence change upon transfer of substrate from an aqueous environment to a nonaqueous environment in the enzyme. These results were consistent with carbon-nitrogen bond cleavage being the major contributor to k(cat).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号