首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Asymmetric and transient properties of reciprocal activity of antagonists during the paw-shake response in the cat
Authors:Jessica R Parker  Alexander N Klishko  Boris I Prilutsky  Gennady S Cymbalyuk
Institution:1. Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America;2. School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America; University of Pittsburgh, UNITED STATES
Abstract:Mutually inhibitory populations of neurons, half-center oscillators (HCOs), are commonly involved in the dynamics of the central pattern generators (CPGs) driving various rhythmic movements. Previously, we developed a multifunctional, multistable symmetric HCO model which produced slow locomotor-like and fast paw-shake-like activity patterns. Here, we describe asymmetric features of paw-shake responses in a symmetric HCO model and test these predictions experimentally. We considered bursting properties of the two model half-centers during transient paw-shake-like responses to short perturbations during locomotor-like activity. We found that when a current pulse was applied during the spiking phase of one half-center, let’s call it #1, the consecutive burst durations (BDs) of that half-center increased throughout the paw-shake response, while BDs of the other half-center, let’s call it #2, only changed slightly. In contrast, the consecutive interburst intervals (IBIs) of half-center #1 changed little, while IBIs of half-center #2 increased. We demonstrated that this asymmetry between the half-centers depends on the phase of the locomotor-like rhythm at which the perturbation was applied. We suggest that the fast transient response reflects functional asymmetries of slow processes that underly the locomotor-like pattern; e.g., asymmetric levels of inactivation across the two half-centers for a slowly inactivating inward current. We compared model results with those of in-vivo paw-shake responses evoked in locomoting cats and found similar asymmetries. Electromyographic (EMG) BDs of anterior hindlimb muscles with flexor-related activity increased in consecutive paw-shake cycles, while BD of posterior muscles with extensor-related activity did not change, and vice versa for IBIs of anterior flexors and posterior extensors. We conclude that EMG activity patterns during paw-shaking are consistent with the proposed mechanism producing transient paw-shake-like bursting patterns found in our multistable HCO model. We suggest that the described asymmetry of paw-shaking responses could implicate a multifunctional CPG controlling both locomotion and paw-shaking.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号