首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cell cycle-dependent induction of homologous recombination by a tightly regulated I-SceI fusion protein
Authors:Hartlerode Andrea  Odate Shobu  Shim Inbo  Brown Jenifer  Scully Ralph
Institution:Department of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America.
Abstract:Double-strand break repair is executed by two major repair pathways: non-homologous end joining (NHEJ) and homologous recombination (HR). Whereas NHEJ contributes to the repair of ionizing radiation (IR)-induced double strand breaks (DSBs) throughout the cell cycle, HR acts predominantly during the S and G2 phases of the cell cycle. The rare-cutting restriction endonuclease, I-SceI, is in common use to study the repair of site-specific chromosomal DSBs in vertebrate cells. To facilitate analysis of I-SceI-induced DSB repair, we have developed a stably expressed I-SceI fusion protein that enables precise temporal control of I-SceI activation, and correspondingly tight control of the timing of onset of site-specific chromosome breakage. I-SceI-induced HR showed a strong, positive linear correlation with the percentage of cells in S phase, and was negatively correlated with the G1 fraction. Acute depletion of BRCA1, a key regulator of HR, disrupted the relationship between S phase fraction and I-SceI-induced HR, consistent with the hypothesis that BRCA1 regulates HR during S phase.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号