首页 | 本学科首页   官方微博 | 高级检索  
   检索      


End product feedback effects on photosynthetic electron transport
Authors:Norman W Pammenter  Francesco Loreto  Thomas D Sharkey
Institution:(1) Department of Biology, University of Natal, 4001 Durban, South Africa;(2) Department of Botany, University of Wisconsin, 53706 Madison, WI, USA
Abstract:The inhibition of photosynthetic electron transport when starch and sucrose synthesis limit the overall rate of photosynthesis was studied inPhaseolus vulgaris L. andXanthium strumarium L. The starch and sucrose limitation was established by reducing photorespiration by manipulation of the partial pressure of O2 and CO2. Chlorophylla fluorescence quenching, the redox state of Photosystem I (estimated by the redox status of NADP-dependent malate dehydrogenase), and the intermediates of the xanthophyll cycle were investigated. Non-photochemical fluorescence quenching increased, NADP-dependent malate dehydrogenase remained at 100% activity, and the amount of violaxanthin decreased when starch and sucrose synthesis limited photosynthesis. In addition, O2-induced feedback caused a decrease in photochemical quenching. These results are consistent with a downward regulation of photosynthetic electron transport during end product feedback on photosynthesis. When leaves were held in high CO2 for 4 hours, the efficiency of Photosystem II was reduced when subsequently measured under low light. The results indicate that the quantum efficiency of open Photosystem II centers was reduced by the 4 hour treatment. We interpret the results to indicate that feedback from starch and sucrose synthesis on photosynthetic electron transport stimulates mechanisms for dissipating excess light energy but that these mechanisms do not completely protect leaves from long-term inhibition of photosynthetic electron transport capacity.
Keywords:chlorophyll fluorescence  feedback limitation  malate dehydrogenase  photoinhibition  photosynthesis  xanthophyll cycle
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号