首页 | 本学科首页   官方微博 | 高级检索  
     


Potentiation of postjunctional cholinergic sensitivity of rat diaphragm muscle by high-energy-phosphate adenine nucleotides
Authors:Douglas A. Ewald
Affiliation:(1) Department of Zoology, University of California, 94720 Berkeley, California;(2) Present address: Department of Biology, University of Oregon, 97403 Eugene, Oregon
Abstract:Summary The cholinergic sensitivity of rat diaphragm muscle, measured as the magnitude of depolarization responses to repetitive, iontophoretic pulses of acetylcholine (ACh) onto neuromuscular endplates, is increased by addition of ATP to the perfusion medium. Depolarization responses begin to increase within the first min after addition of 10mm ATP and plateau at 60% above control levels (mean value) after 4 to 6 min. Neither the magnitude nor the time course of the potentiations corresponds to changes in resting potential or membrane resistance. Other nucleotides are equally or less effective at the same concentration: ATP-ADP>UTP>AMP=GTP (=no added nucleotide control) The duration of the individual ACh responses does not increase during continuous exposure to the active nucleotides for up to 15 min except when the muscle is pretreated with eserine.Mild enzymatic predigestion of the muscle with collagenase and then protease, increasing the availability of the postjunctional membrane to bath-applied drugs, decreases the variability and increases the magnitude of the potentiation to a given dose of ATP. The dose-response curve for ATP is then more than half-maximal at 1mm and the ranking of the other nucleotides relative to ATP is the same as without predigestion.There is an optimum Ca++ concentration for the potentiation between zero and 2mm: potentiation is enhanced in Ca++-free medium, partially blocked in twice-normal Ca++ medium, and totally blocked in Ca++-free medium 10 min after a 5 min exposure to 2.5mm EGTA. The similar Ca++ dependence of ACh receptor activation in the absence of added nucleotide suggests that ATP directly facilitates receptor activation by ACh. This facilitory action could be one of the physiological roles for the ATP released from stimulated phrenic nerve.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号