Leakage of periplasmic enzymes from envA1 strains of Escherichia coli |
| |
Authors: | K Young L L Silver |
| |
Affiliation: | Merck, Sharp & Dohme Research Laboratories, Rahway, New Jersey 07065. |
| |
Abstract: | Previous work ascribed antibiotic hypersensitivity of the envA1 mutant to lowered lipopolysaccharide levels and exposure of the lipid bilayer. In the detailed characterization of the EnvA permeability phenotype presented here, the envA1 mutation was shown to confer leakage of the periplasmic enzymes beta-lactamase and RNase I. Leakage was observed in three different genetic backgrounds, including the original envA1 strain and its parent. In contrast, no detectable leakage of the cytoplasmic enzyme beta-galactosidase was observed. Sensitivity of envA1 strains to a range of antibiotics not previously reported was tested, and lipophilicity (partition coefficient) of a number of antibiotics was determined. On the basis of observations of periplasmic leakage and sensitivity to large hydrophilic antibiotics and lysozyme, part of the permeability phenotype of the envA1 mutant is proposed to be due to transient rupture and resealing of the EDTA-sensitive outer membrane layer. In this regard, the EnvA permeability phenotype falls into a general class of permeability/leaky mutants of both Escherichia coli and Salmonella typhimurium. |
| |
Keywords: | |
|
|