Organelles are transported on sliding microtubules in Reticulomyxa |
| |
Authors: | Orokos D D Cole R W Travis J L |
| |
Affiliation: | Department of Biological Sciences, The University at Albany, State University of New York, Albany, New York 12222, USA. |
| |
Abstract: | Organelles and plasma membrane domains appear to be transported along Reticulomyxa's microtubule cytoskeleton. Previously we demonstrated that organelle and cell surface transport share the same enzymatic properties and suggested that both are powered by the same cytoplasmic dynein. Motility analysis in Reticulomyxa is complicated by the fact that the microtubules also are motile and appear to "slide" bidirectionally throughout the network. We have utilized laser ablation to address this frame-of-reference problem as to how each transport component (microtubule sliding vs. organelle translocations) contributes to reactivated bidirectional translocation of organelles along the microtubule cytoskeleton. Laser ablation was used to cut microtubule bundles from lysed networks into 4-15-microm segments. After examining these reactivated cut fragments, it appears that the majority of organelles did not move relative to microtubule fragments, but remained attached to microtubules and moved as the microtubules slid. Microtubule sliding stops after 1-2 min and cannot be reactivated even when perfused with fresh ATP. Furthermore, once sliding stops, organelle transport also stops. Our findings indicate that the majority of Reticulomyxa pseudopodial organelles do not move along the surface of the microtubules, rather it is the sliding of the microtubules to which they are attached that moves them. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|