首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Vacuolar H+-translocating ATPases from plants: Structure,function, and isoforms
Authors:Heven Sze  John M Ward  Shoupeng Lai
Institution:(1) Department of Botany, University of Maryland, 20742 College Park, Maryland;(2) Present address: Department of Biology, University of California at San Diego, 92093-0116 La Jolla, California;(3) V. T. Lombardi Cancer Research Center, Georgetown University Medical School, 3800 Reservoir Rd. N.W., 20007 Washington DC
Abstract:The vacuolar H+-translocating ATPase (V-type ATPase) plays a central role in the growth and development of plant cells. In a mature cell, the vacuole is the largest intracellular compartment, occupying about 90% of the cell volume. The proton electrochemical gradient (acid inside) formed by the vacuolar ATPase provides the primary driving force for the transport of numerous ions and metabolites against their electrochemical gradients. The uptake and release of solutes across the vacuolar membrane is fundamental to many cellular processes, such as osmoregulation, signal transduction, and metabolic regulation. Vacuolar ATPases may also reside on endomembranes, such as Golgi and coated vesicles, and thus may participate in intracellular membrane traffic, sorting, and secretion.Plant vacuolar ATPases are large complexes (400–650 kDa) composed of 7–10 different subunits. The peripheral sector of 5–6 subunits includes the nucleotide-binding catalytic and regulatory subunits of sim 70 and sim 60 kDa, respectively. Six copies of the 16-kDa proteolipid together with 1–3 other subunits make up the integral sector that forms the H+ conducting pathway. Isoforms of plant vacuolar ATPases are suggested by the variations in subunit composition observed among and within plant species, and by the presence of a small multigene family encoding the 16-kDa and 70-kDa subunits. Multiple genes may encode isoforms with specific properties required to serve the diverse functions of vacuoles and endomembrane compartments.Abbreviations DCCD N,Nprime-dicyclohexylcarbodiimide - CAM Crassulacean acid metabolism - Nbd-Cl 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole - Bz-ATP 3-O-(4-benzoyl)benzolyadenosine 5prime-triphosphate - DIDS 4,4prime-diisothiocyanostilbene-2,2prime-disulfonic acid - NEM N-ethylmaleimide - IP3 inositol-1,4,5-triphosphate - H+-PPase H+-translocating pyrophosphatase - V-type vacuolar-type - P-type phosphorylated intermediate- or plasma membrane-type - F-type F1Fo-type - V-ATPase vacuolar-type H+-ATPase
Keywords:Vacuolar  H+-ATPase  plant  transport  proton pump  tonoplast  V-type
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号