首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Physiological and morphological effects of genetic alterations leading to a reduced synthesis of UDP-glucose in Saccharomyces cerevisiae
Authors:Jean Marc Darana  Walter Bella  Jean Françoisa
Institution:Centre de Bioingenierie Gilbert Durand, UMR-CNRS 5504, Laboratoire associéINRA, Complexe Scientifique de Rangueil, 31077 Toulouse Cedex 04, France
Abstract:Yeast cells lacking UDP-Glc pyrophosphorylase (UGPase) encoded by UGP1 are not viable. Two strategies were developed to drastically reduce the intracellular concentration of UDP-Glc in order to study the consequences of this metabolic engineering on physiology and morphology. Firstly, UGP1 was placed under the strongly regulatable THI4 promoter. This resulted in a 95% reduction of UGPase activity in the presence of thiamine. The phenotypic effects of this reduction were slightly stronger than those of glucose on the GAL10/CYC1-UGP1 gene fusion Daran et al. (1995) Eur. J. Biochem. 230, 520–530]. A further reduction of flux towards UDP-Glc was achieved by deletion of the two phosphoglucomutase genes in the ugp1 conditional strain. The growth of this new mutant strain was hardly affected, while it was extremely sensitive to cell wall interfering drugs. Surprisingly, UDP-Glc levels were reduced only by 5-fold, causing a proportional decrease in both glycogen and β-glucans. Taken altogether, these results indicate that a few percent of enzymatic activities leading to the formation of UDP-Glc appears sufficient to provide the UDP-Glc demands required for cell viability, and that the loss of function of UGP1 is lethal mainly because of the inability of yeast cells to properly form the cell wall.
Keywords:Uridine diphosphoglucose  Regulatable promoter  Storage carbohydrate  Cell wall  Metabolic flux  Yeast
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号