首页 | 本学科首页   官方微博 | 高级检索  
     


5-Aminolevulinic Acid Ameliorates the Growth, Photosynthetic Gas Exchange Capacity, and Ultrastructural Changes Under Cadmium Stress in Brassica napus L.
Authors:Basharat Ali  B. Wang  Shafaqat Ali  M. A. Ghani  M. T. Hayat  C. Yang  L. Xu  W. J. Zhou
Affiliation:1. Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
2. Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan
3. Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
4. Department of Environmental Sciences, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
5. Agricultural Experiment Station, Zhejiang University, Hangzhou, 310058, China
Abstract:Heavy-metal toxicity in soil is one of the major constraints for oilseed rape (Brassica napus L.) production. One of the best ways to overcome this constraint is the use of growth regulators to induce plant tolerance. Response to cadmium (Cd) toxicity in combination with a growth regulator, 5-aminolevulinic acid (ALA), was investigated in oilseed rape grown hydroponically in greenhouse conditions under three levels of Cd (0, 100, and 500 μM) and three levels of foliar application of ALA (0, 12.5, and 25 mg l?1). Cd decreased plant growth and the chlorophyll concentration in leaves. Foliar application of ALA improved plant growth and increased the chlorophyll concentration in the leaves of Cd-stressed plants. Significant reductions in photosynthetic parameters were observed by the addition of Cd alone. Application of ALA improved the net photosynthetic and gas exchange capacity of plants under Cd stress. ALA also reduced the Cd content in shoots and roots, which was elevated by high concentrations of Cd. The microscopic studies of leaf mesophyll cells under different Cd and ALA concentrations showed that foliar application of ALA significantly ameliorated the Cd effect and improved the structure of leaf mesophyll cells. However, the higher Cd concentration (500 μM) could totally damage leaf structure, and at this level the nucleus and intercellular spaces were not established as well; the cell membrane and cell wall were fused to each other. Chloroplasts were totally damaged and contained starch grains. However, foliar application of ALA improved cell structure under Cd stress and the visible cell structure had a nucleus, cell wall, and cell membrane. These results suggest that under 15-day Cd-induced stress, application of ALA helped improve plant growth, chlorophyll content, photosynthetic gas exchange capacity, and ultrastructural changes in leaf mesophyll cells of the rape plant.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号