首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Continuous detection of weak sensory signals in afferent spike trains: the role of anti-correlated interspike intervals in detection performance
Authors:Goense  J B M  Ratnam  R
Institution:(1) Beckman Institute, University of Illinois at Urbana-Champaign, IL 61801, USA;(2) Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
Abstract:An important problem in sensory processing is deciding whether fluctuating neural activity encodes a stimulus or is due to variability in baseline activity. Neurons that subserve detection must examine incoming spike trains continuously, and quickly and reliably differentiate signals from baseline activity. Here we demonstrate that a neural integrator can perform continuous signal detection, with performance exceeding that of trial-based procedures, where spike counts in signal- and baseline windows are compared. The procedure was applied to data from electrosensory afferents of weakly electric fish (Apteronotus leptorhynchus), where weak perturbations generated by small prey add ~1 spike to a baseline of ~300 spikes s–1. The hypothetical postsynaptic neuron, modeling an electrosensory lateral line lobe cell, could detect an added spike within 10–15 ms, achieving near ideal detection performance (80–95%) at false alarm rates of 1–2 Hz, while trial-based testing resulted in only 30–35% correct detections at that false alarm rate. The performance improvement was due to anti-correlations in the afferent spike train, which reduced both the amplitude and duration of fluctuations in postsynaptic membrane activity, and so decreased the number of false alarms. Anti-correlations can be exploited to improve detection performance only if there is memory of prior decisions.Abbreviations B binomial - CV coefficient of variation - EOD electric organ discharge - ELL electrosensory lateral line lobe - EPSP excitatory postsynaptic potential - ISI interspike interval - M0 Markov order zero - M1 Markov order one - N noise - OC operating characteristic - PDF probability density function - ROC receiver operating characteristic - S signal - SNR signal-to-noise ratio - S+N signal in noise
Keywords:Continuous detection  Electroreception  Interspike interval correlations  Neural coding  Sequential hypothesis testing
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号