首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Xylose transport studies with xylose-utilizing <Emphasis Type="Italic">Saccharomyces cerevisiae</Emphasis> strains expressing heterologous and homologous permeases
Authors:Anu Saloheimo  Jenita Rauta  Oleh V Stasyk  Andrei A Sibirny  Merja Penttilä  Laura Ruohonen
Institution:(1) VTT, Technical Research Centre of Finland, P.O. Box 1000, Espoo, FI-02044, Finland;(2) Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov Str. 14/16, Lviv, 79005, Ukraine;(3) Department of Metabolic Engineering, University of Rzeszów, Cwiklinskiej 2, 35-601 Rzeszów, Poland;(4) Present address: Laboratory of Cancer Genetics, Institute of Medical Technology, University of Tampere, Biokatu 6-8, FI-33520, Tampere, Finland
Abstract:In the present study, we modified xylose uptake properties of a recombinant xylose-utilizing yeast Saccharomyces cerevisiae by expression of heterologous and homologous permease-encoding genes. In a mutant yeast strain with the main seven hexose transporter genes deleted, and engineered for xylose utilization, we screened an expression cDNA library of the filamentous fungus Trichoderma reesei (Hypocrea jecorina) for enhanced growth on xylose plates. One cDNA clone with significant homology to fungal sugar transporters was obtained, but when the clone was retransformed into the host, it did not support significant growth on xylose. However, during a long liquid culture of the strain carrying the cDNA clone, adaptive mutations apparently occurred in the host, which led to growth on xylose but not on glucose. The new transporter homologue, Trxlt1 thus appears to code for a protein specific for xylose uptake. In addition, xylose-transporting properties of some homologous hexose transporters were studied. All of them, i.e., Hxt1, Hxt2, Hxt4, and Hxt7 were capable of xylose uptake. Their affinities for xylose varied, K m values between 130 and 900 mM were observed. The single-Hxt strains showed a biphasic growth mode on xylose, alike the Trxlt1 harboring strain. The initial, slow growth was followed by a long lag and finally by exponential growth.
Keywords:Xylose uptake            Saccharomyces cerevisiae            Hexose transporters            Trichoderma reesei transporter  Adaptive mutation(s)
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号