首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Activated protein C-protein C inhibitor complex formation: characterization of a neoepitope provides evidence for extensive insertion of the reactive center loop
Authors:Strandberg K  Kjellberg M  Erb E M  Persson U  Mosher D F  Villoutreix B O  Stenflo J
Institution:Department of Clinical Chemistry, University Hospital, Malm?, Lund University, S-205 Malm?, Sweden.
Abstract:Protein C inhibitor, a serine proteinase inhibitor (serpin), is the physiologically most important inhibitor of activated protein C. We have made a monoclonal antibody (M36) that binds with equally high affinity to an epitope present in activated protein C-protein C inhibitor complexes and cleaved loop-inserted protein C inhibitor. Insertion of a synthetic N-acetylated tetradecapeptide (corresponding to residues P1-P14 of the reactive center loop) into beta-sheet A of the uncleaved inhibitor also exposed the epitope. The antibody had no apparent affinity for native uncleaved inhibitor or for the free peptide. Synthetic P1-P14 analogues, with Arg P13 or Ala P9 substituted to the residues found in mouse protein C inhibitor (Thr and Ile, respectively), were also inserted in beta-sheet A. The Arg P13/Thr substitution led to a greatly impaired reactivity with the antibody, whereas the Ala P9/Ile mutation resulted in a modest loss of reactivity with the antibody. These results indicate that complex formation leads to insertion of the reactive center loop in beta-sheet A from Arg P14 and presumably beyond Ala P9. Moreover, to the best of our knowledge, this is the first instance where the neoepitope of a complexation-specific monoclonal antibody has been localized to the loop-inserted part of beta-sheet A, the part of the serpin where the complexation-induced conformational change is most conspicuous.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号