Crystal structure of an acylpeptide hydrolase/esterase from Aeropyrum pernix K1 |
| |
Authors: | Bartlam Mark Wang Ganggang Yang Haitao Gao Renjun Zhao Xiaodong Xie Guiqiu Cao Shuigui Feng Yan Rao Zihe |
| |
Affiliation: | Laboratory of Structural Biology, Tsinghua University and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100084, China. |
| |
Abstract: | Acylpeptide hydrolases (APH; also known as acylamino acid releasing enzyme) catalyze the removal of an N-acylated amino acid from blocked peptides. The crystal structure of an APH from the thermophilic archaeon Aeropyrum pernix K1 to 2.1 A resolution confirms it to be a member of the prolyl oligopeptidase family of serine proteases. The structure of apAPH is a symmetric homodimer with each subunit comprised of two domains. The N-terminal domain is a regular seven-bladed beta-propeller, while the C-terminal domain has a canonical alpha/beta hydrolase fold and includes the active site and a conserved Ser445-Asp524-His556 catalytic triad. The complex structure of apAPH with an organophosphorus substrate, p-nitrophenyl phosphate, has also been determined. The complex structure unambiguously maps out the substrate binding pocket and provides a basis for substrate recognition by apAPH. A conserved mechanism for protein degradation from archaea to mammals is suggested by the structural features of apAPH. |
| |
Keywords: | |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|