首页 | 本学科首页   官方微博 | 高级检索  
     


Modulation of chromium(VI) toxicity by organic and inorganic sulfur species in yeasts from industrial wastes
Authors:Milva Pepi  Franco Baldi
Affiliation:Università di Siena, Dipartimento di Biologia Ambientale, Italy.
Abstract:Two chromium(VI) resistant yeast strains (Candida sp. and Rhodosporidium sp.) were isolated from industrial wastes. Four different yeasts, three from the Industrial Yeast Collection and one of pharmaceutical origin, were also studied in relation to chromate toxicity and its alleviation by sulfur species. The growth of yeasts from industrial wastes was inhibited by 50% by high concentrations of Cr(VI): Candida sp. by 4 mM Cr(VI) and Rhodosporidium sp. by 10 mM Cr(VI) in Sabouraud Broth medium. The other Cr(VI)-sensitive yeasts were inhibited by 0.1 mM Cr(VI). The general mechanism of chromium resistance in Candida sp. and Rhodosporidium sp. was due to reduced uptake of chromium, but not to biological reduction from Cr(VI) to Cr(III). In Cr(VI)-sensitive yeasts, chromium was accumulated as much as 10-fold, as in Saccharomyces cerevisiae. Cr(VI) toxicity in Candida sp. was modulated from Cr(VI)-resistance to Cr(VI)-hypersensitivity depending on the addition of methionine, cysteine, sulfate and djenkolic acid. If Candida sp. was grown in the presence of S-amino acids, especially methionine, it was more resistant than if the sulfur source was sulfate. When sulfate transport was enhanced by addition of djenkolic acid, Candida sp. became hypersensitive. Rhosporidium sp. was always resistant to Cr(VI) because sulfate transport was inefficient and it assimilated sulfur as S-amino acids. Cr(VI)-sensitive yeasts required larger amounts of S-amino acids, especially methionine, to tolerate Cr(VI) toxicity. Cysteine was toxic for C.famata 6016 above 50 microM.
Keywords:Chromate  Cr(VI) uptake  resistance  S-amino-acids  sulfate  yeasts
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号