首页 | 本学科首页   官方微博 | 高级检索  
     


Morphology heterogeneity within a Campylobacter jejuni helical population: the use of calcofluor white to generate rod‐shaped C. jejuni 81‐176 clones and the genetic determinants responsible for differences in morphology within 11168 strains
Authors:Emilisa Frirdich  Jacob Biboy  Steven Huynh  Craig T. Parker  Waldemar Vollmer  Erin C. Gaynor
Affiliation:1. Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada;2. Institute for Cell and Molecular Biosciences, The Centre for Bacterial Cell Biology, Newcastle University, Newcastle Upon Tyne, UK;3. Agricultural Research Service, U.S. Department of Agriculture, Produce Safety and Microbiology Research Unit, Albany, CA, USA
Abstract:Campylobacter jejuni helical shape is important for colonization and host interactions with straight mutants having altered biological properties. Passage on calcofluor white (CFW) resulted in C. jejuni 81‐176 isolates with morphology changes: either a straight morphology from frameshift mutations and single nucleotide polymorphisms in peptidoglycan hydrolase genes pgp1 or pgp2 or a reduction in curvature due a frameshift mutation in cjj81176_1105, a putative peptidoglycan endopeptidase. Shape defects were restored by complementation. Whole genome sequencing of CFW‐passaged strains showed no specific changes correlating to CFW exposure. The cjj81176_1279 (recR; recombinational DNA repair) and cjj81176_1449 (unknown function) genes were highly variable in all 81‐176 strains sequenced. A frameshift mutation in pgp1 of our laboratory isolate of the straight genome sequenced variant of 11168 (11168‐GS) was also identified. The PG muropeptide profile of 11168‐GS was identical to that of Δpgp1 in the original minimally passaged 11168 strain (11168‐O). Introduction of wild type pgp1 into 11168‐GS did not restore helical morphology. The recR gene was also highly variable in 11168 strains. Microbial cell‐to‐cell heterogeneity is proposed as a mechanism of ensuring bacterial survival in sub‐optimal conditions. In certain environments, changes in C. jejuni morphology due to genetic heterogeneity may promote C. jejuni survival.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号