首页 | 本学科首页   官方微博 | 高级检索  
     


A microsatellite analysis of natterjack toad, Bufo calamita, metapopulations
Authors:G. Rowe  T. J. C. Beebee   T. Burke
Abstract:Although it is widely recognised that spatial subdivision of populations is common in nature, there is no consensus as to how metapopulation dynamics affect genetic diversity. We investigated the genetic differentiation of natterjack toads, Bufo calamita , in three regions of Britain where habitat continuity indicated the likely occurrence of extensive metapopulations. Our intention was to determine whether genetic analysis supported the existence of metapopulation structures, if so of what type, and to identify barriers to migration between subpopulations. Allele frequencies were determined across eight polymorphic microsatellite loci for a total of 24 toad subpopulations at three separate sites. Genetic differentiation was assessed using five measures of genetic distance, notably F ST , R ST , Nei's standard distance D s , Δμ2 and the Cavalli-Sforza chord distance D c . B. calamita exhibited small but significant levels of genetic differentiation between subpopulations in all three study areas, and genetic and geographic distance correlations indicated isolation-by-distance effects in all three cases. The effects on correlation strengths of compensation for positive (sea, rivers, urban development) and negative (pond clusters) barriers to toad migration between the subpopulations in each area were also determined. D c , a measure which assumes that differentiation is caused by drift with negligible mutation effect, yielded the most plausible interpretation of metapopulation structures. Overall the patterns of genetic variation suggested the existence of a mixed metapopulation model for this species, with high levels of gene flow compatible with one version of the classical model but often supported by particularly stable subpopulations as in the mainland-island model.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号