首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Presynaptic alpha2-receptors regulate reverse Na+/Ca2+-exchange and transmitter release in Na+-loaded peripheral sympathetic nerves
Authors:Török Tamás L  Nagykáldi Zsolt  Sáska Zsuzsanna  Kovács Timur  Nada Somaia A  Zilliikens Stefan  Magyar Kálmán  Sylvester Vizi E
Institution:Department of Pharmacodynamics, Semmelweis University, Nagyvárad-tér 4, P.O. Box 370, H-1445 Budapest, Hungary. tortam@net.sote.hu
Abstract:Electrical depolarisation-(2 Hz, 1 ms)-induced 3H]noradrenaline (3H]NA) release has been measured from the isolated main pulmonary artery of the rabbit in the presence of uptake blockers (cocaine, 3 x 10(-5) M; corticosterone, 5 x 10(-5) M). Substitution of most of the external Na+ by Li+ (113 mM; Na+]0: 25 mM) slightly potentiated the axonal stimulation-evoked release of 3H]NA in a tetrodotoxin (TTX, 10(-7) M) sensitive manner. The reverse Na+/Ca2+-exchange inhibitor KB-R7943 (3 x 10(-5) M) failed to inhibit the stimulation-evoked release of 3H]NA, but increased the resting outflow of neurotransmitter. The 'N-type' voltage-sensitive Ca2+-channel (VSCC) blocker omega-conotoxin (omega-CgTx) GVIA (10(-8) M) significantly and irreversibly inhibited the release of 3H]NA on stimulation (approximately 60-70%). The 'residual release' of NA was abolished either by TTX or by reducing external Ca2+ from 2.5 to 0.25 mM. The 'residual release' of NA was also blocked by the non-selective VSCC-blocker neomycin (3 x 10(-3) M). Correlation was obtained between the extent of VSCC-inhibition and the transmitter release-enhancing effect of presynaptic alpha2-receptor blocker yohimbine (3 x 10(-7) M). When the release of 3H]NA was blocked by omega-CgTx GVIA plus neomycin, yohimbine was ineffective. Inhibition of the Na+-pump by removal of K+ from the external medium increased both the resting and the axonal stimulation-evoked release of 3H]NA in the absence of functioning VSCCs (i.e., in the presence of neomycin and after omega-CgTx treatment). Under these conditions the stimulation-evoked release of NA was abolished either by TTX or by external Ca2+-removal (+1 mM EGTA). Similarly, external Li+ (113 mM) or the reverse Na+/Ca2+ exchange blocker KB-R7943 (3 x 10(-5) M) significantly inhibited the stimulation-induced transmitter release in 'K+-free' solution. KB-R7943 decreased the resting outflow of NA as well. Under conditions in which the Na+-pump was inhibited in the absence of functioning VSCCs, yohimbine (3 x 10(-7) M) further enhanced the release of neurotransmitter, while l-noradrenaline (l-NA, 10(-6) M), an agonist of presynaptic alpha2-receptors, inhibited it. The yohimbine-induced enhancement of NA-release was abolished by Li+-substitution and significantly inhibited by KB-R7943 application. It is concluded that after blockade of VSCCs brief depolarising pulses may reverse Na+/Ca2+-exchange and release neurotransmitter in Na+-loaded sympathetic nerves. Further, similar to that of VSCCs, the reverse Na+/Ca2+-exchange may also be regulated by presynaptic alpha2-receptors.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号