首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Striatal dopamine-NMDA receptor interactions in the modulation of glutamate release in the substantia nigra pars reticulata in vivo: opposite role for D1 and D2 receptors
Authors:Marti Matteo  Mela Flora  Bianchi Clementina  Beani Lorenzo  Morari Michele
Institution:Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara, via Fossato di Mortara 17-19, 44100 Ferrara, Italy.
Abstract:To investigate the antioxidative capacities of oligodendrocytes, rat brain cultures enriched for oligodendroglial cells were prepared and characterized. These cultures contained predominantly oligodendroglial cells as determined by immunocytochemical staining for the markers galactocerebroside and myelin basic protein. If oligodendroglial cultures were exposed to exogenous hydrogen peroxide (100 micro m), the peroxide disappeared from the incubation medium following first order kinetics with a half-time of approximately 18 min. Normalization of the disposal rate to the protein content of the cultures by calculation of the specific hydrogen peroxide detoxification rate constant revealed that the cells in oligodendroglial cultures have a 60% to 120% higher specific capacity to dispose of hydrogen peroxide than cultures enriched for astroglial cells, microglial cells or neurones. Oligodendroglial cultures contained specific activities of 133.5 +/- 30.4 nmol x min(-1) x mg protein(-1) and 27.5 +/- 5.4 nmol x min(-1) x mg protein(-1) of glutathione peroxidase and glutathione reductase, respectively. The specific rate constant of catalase in these cultures was 1.61 +/- 0.54 min(-1) x mg protein(-1). Comparison with data obtained by identical methods for cultures of astroglial cells, microglial cells and neurones revealed that all three of the enzymes which are involved in hydrogen peroxide disposal were present in oligodendroglial cultures in the highest specific activities. These results demonstrate that oligodendroglial cells in culture have a prominent machinery for the disposal of hydrogen peroxide, which is likely to support the protection of these cells in brain against peroxides when produced by these or by surrounding brain cells.
Keywords:dopamine  glutamate  microdialysis  NMDA  6-hydroxydopamine  substantia nigra
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号