首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Beneficial and detrimental interactive effects of dissolved organic matter and ultraviolet radiation on Zooplankton in a transparent lake
Authors:Sandra L Cooke  Craig E Williamson  Bruce R Hargreaves  Donald P Morris
Institution:(1) Department of Earth and Environmental Sciences, Lehigh University, 31 Williams Drive, Bethlehem, PA 18015-3188, USA;(2) Department of Zoology, Miami University, 212 Pearson Hall, Oxford, OH 45056, USA
Abstract:While changes in dissolved organic matter (DOM) concentrations are expected to affect zooplankton species through attenuation of potentially damaging ultraviolet (UV) radiation, generation of potentially beneficial or harmful photoproducts, pH alteration, and microbial food web stimulation, the combined effects of such changes on zooplankton community structure have not been studied previously. Our purpose was to determine how an increase in allochthonous DOM and associated changes in pH in an initially transparent lake may affect zooplankton community structure, and how exposure to solar UV may alter these DOM and pH effects. We ran microcosm experiments manipulating UV, DOM, and pH near the surface of Lake Giles in northeastern Pennsylvania. We found that when DOM was added in the presence of ambient UV, Daphnia and copepod UV-mortality was reduced by approximately three and two times compared to UV exposure without extra DOM. When DOM was added in the absence of UV, adult Daphnia and copepods were reduced compared to no DOM addition in the absence of UV. Daphnia and cyclopoid egg production and rotifer abundance were generally higher in the presence of DOM, regardless of UV treatment. The lower abundance yet high egg production in the presence of DOM and absence of UV may be explained by higher abundance of egg-bearing adults compared to non-egg-bearers. We conclude that allochthonous DOM benefits some zooplankton in a high-UV environment, but may be detrimental under low-UV conditions. Overall, Daphnia abundance and egg production were higher than that of calanoid copepods in the DOM additions, indicating that in some lakes an increase in allochthonous DOM may lead to a zooplankton community shift favoring Daphnia over calanoid copepods.
Keywords:UV radiation  DOM  freshwater zooplankton  acid tolerance
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号