The couplonopathies: A comparative approach to a class of diseases of skeletal and cardiac muscle |
| |
Authors: | Eduardo Ríos Lourdes Figueroa Carlo Manno Natalia Kraeva Sheila Riazi |
| |
Affiliation: | 1Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612;2Malignant Hyperthermia Investigation Unit, University Health Network, Toronto General Hospital, Toronto, Ontario M5G 2C4, Canada |
| |
Abstract: | ConclusionsWe define a novel category of diseases of striated muscle, the couplonopathies, as those that have in common a substantial disruption of the functional unit of Ca2+ release for EC coupling, the couplon. Consideration of similarities and differences between the couplons of skeletal and cardiac muscle affords insights into the pathogenesis of several couplonopathies, including MH and CPVT. Specifically, we argue that the allosteric connection among couplon proteins CaV1.1 and RyR1 is required for the MH phenotype usually linked to mutations in the RyR channel to also associate with mutations in CaV1.1. As an extension of this idea, we propose that the same allosteric interaction underpins the beneficial effects of dantrolene. The absence of a corresponding mechanical connection in cardiac muscle explains the absence of CPVT diseases caused by mutations in CaV1.2. Based on mechanistic considerations applicable to both couplons, we identify the plasmalemma as a site of alterations in transport properties, typically consisting of an increase in store-operated calcium entry, secondary to couplon mutations that promote Ca2+ release. These secondary changes constitute significant factors in the pathogenesis of MH. Mutations in triadin and calsequestrin have tissue-specific consequences: in the heart they cause couplonopathies associated with either loss of the allosteric control putatively exerted by these proteins on the Ca2+ release channel or loss of Ca2+ buffer capacity in the SR. In skeletal muscle, the phenotypes are milder or nonexistent because of the narrower range of physiological [Ca2+]SR visited during function, as well as the much greater functional reserve of Ca storage that is present in this tissue. Finally, the effects of variants or ablation of JP-45 demonstrate a control of the DHPR that is unique to skeletal muscle and may be prescribed by the separate channel and sensor functions of the skeletal muscle DHPR. |
| |
Keywords: | |
|
|