首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Growth media in anaerobic fermentative processes: The underestimated potential of thermophilic fermentation and anaerobic digestion
Authors:ATWM Hendriks  JB van Lier  MK de Kreuk
Institution:Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628CN Delft, The Netherlands
Abstract:Fermentation and anaerobic digestion of organic waste and wastewater is broadly studied and applied. Despite widely available results and data for these processes, comparison of the generated results in literature is difficult. Not only due to the used variety of process conditions, but also because of the many different growth media that are used. Composition of growth media can influence biogas production (rates) and lead to process instability during anaerobic digestion. To be able to compare results of the different studies reported, and to ensure nutrient limitation is not influencing observations ascribed to process dynamics and/or reaction kinetics, a standard protocol for creating a defined growth medium for anaerobic digestion and mixed culture fermentation is proposed. This paper explains the role(s) of the different macro- and micronutrients, as well as the choices for a growth medium formulation strategy. In addition, the differences in nutrient requirements between mesophilic and thermophilic systems are discussed as well as the importance of specific trace metals regarding specific conversion routes and the possible supplementary requirement of vitamins. The paper will also give some insight into the bio-availability and toxicity of trace metals. A remarkable finding is that mesophilic and thermophilic enzymes are quite comparable at their optimum temperatures. This has consequences for the trace metal requirements of thermophiles under certain conditions. Under non-limiting conditions, the trace metal requirement of thermophilic systems is about 3 times higher than for mesophilic systems.
Keywords:Nutrient  Trace metal  Volatile fatty acid  Fermentation  Anaerobic digestion  Mesophilic  Thermophilic  Enzyme  Hydrogen  Biogas
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号