首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Increased Carotenoid Production by the Food Yeast Candida utilis through Metabolic Engineering of the Isoprenoid Pathway
Authors:Hiroshi Shimada  Keiji Kondo  Paul D Fraser  Yutaka Miura  Toshiko Saito  and Norihiko Misawa
Abstract:The yeast Candida utilis does not possess an endogenous biochemical pathway for the synthesis of carotenoids. The central isoprenoid pathway concerned with the synthesis of prenyl lipids is present in C. utilis and active in the biosynthesis of ergosterol. In our previous study, we showed that the introduction of exogenous carotenoid genes, crtE, crtB, and crtI, responsible for the formation of lycopene from the precursor farnesyl pyrophosphate, results in the C. utilis strain that yields lycopene at 1.1 mg per g (dry weight) of cells (Y. Miura, K. Kondo, T. Saito, H. Shimada, P. D. Fraser, and N. Misawa, Appl. Environ. Microbiol. 64:1226–1229, 1998). Through metabolic engineering of the isoprenoid pathway, a sevenfold increase in the yield of lycopene has been achieved. The influential steps in the pathway that were manipulated were 3-hydroxy methylglutaryl coenzyme A (HMG-CoA) reductase, encoded by the HMG gene, and squalene synthase, encoded by the ERG9 gene. Strains overexpressing the C. utilis HMG-CoA reductase yielded lycopene at 2.1 mg/g (dry weight) of cells. Expression of the HMG-CoA catalytic domain alone gave 4.3 mg/g (dry weight) of cells; disruption of the ERG9 gene had no significant effect, but a combination of ERG9 gene disruption and the overexpression of the HMG catalytic domain yielded lycopene at 7.8 mg/g (dry weight) of cells. The findings of this study illustrate how modifications in related biochemical pathways can be utilized to enhance the production of commercially desirable compounds such as carotenoids.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号