首页 | 本学科首页   官方微博 | 高级检索  
     


Time-resolved quasielastic neutron scattering studies of native photosystems
Authors:  rg Pieper
Affiliation:Max-Volmer-Laboratories for Biophysical Chemistry, Technische Universität Berlin, PC14, Strasse des 17. Juni 135, 10623 Berlin, Germany
Abstract:The internal molecular dynamics of proteins plays an important role in a number of functional processes in native photosystems. Prominent examples include the photocycle of bacteriorhodopsin and electron transfer in the reaction center of plant photosystem II. In this regard, the recently developed technique of time-resolved quasielastic neutron scattering with laser excitation opens up new perspectives for the study of protein/membrane dynamics in specific functional states of even complex systems. The first direct observation of a functionally modulated protein dynamics has just recently been reported for the model system bacteriorhodopsin (Pieper et al., Phys. Rev. Lett. 100, 2008, 228103.), where a transient softening of the protein was observed on a timescale of ∼ 1 ms along with the large-scale structural change in the M-intermediate of bacteriorhodopsin. In contrast, photosystem II membrane fragments with inhibited electron transfer show a suppression of protein dynamics ∼160 μs after the actinic laser flash (Pieper and Renger, Biochemistry 48, 2009, 6111). This effect may reflect aggregation-like conformational changes capable of dissipation of excess excitation energy to prevent photodamage in the absence of QAQB electron transfer. These findings indicate that proteins exhibit a remarkable flexibility to accommodate different functional processes. This contribution will discuss methodical aspects, challenges, and recent applications of laser-excited, time-resolved quasielastic neutron scattering.
Keywords:Time-resolved quasielastic neutron scattering   Protein dynamic   Bacteriorhodopsin   Photocycle   Photosynthesis   Photosystem II
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号