首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Relations between biochemical thermodynamics and biochemical kinetics
Authors:Alberty Robert A
Institution:Department of Chemistry, Massachusetts Institute of Technology, Room 6-215, MIT, 77 Mass. Ave., Cambridge, MA 02139, USA. alberty@mit.edu
Abstract:The parameters in steady-state or rapid-equilibrium rate equations for enzyme-catalyzed reactions depend on the temperature, pH, and ionic strength, and may depend on the concentrations of specific species in the buffer. When the complete rate equation (i.e. the equation with parameters for the reverse reaction as well as the forward reaction) is determined, there are one or more Haldane relations between some of the kinetic parameters and the apparent equilibrium constant for the reaction that is catalyzed. When the apparent equilibrium constant can be calculated from the kinetic parameters, the equilibrium composition can be calculated. This is remarkable because the kinetic parameters all depend on the properties of the enzymatic site, but the apparent equilibrium constant and the equilibrium composition do not. The effects of ionic strength and pH on the unoccupied enzymatic site and the occupied enzymatic site have to cancel in the Haldane relation or in the calculation of the apparent equilibrium constant using the rate constants for the steps in the mechanism. Several simple enzymatic mechanisms and their complete rate equations are discussed.
Keywords:Kinetics of enzyme-catalyzed reactions  Rate equations  Haldane relations  Apparent equilibrium constants  Rate constants  Kinetic parameters
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号